Machine Learning

Erst die Datenjagd, dann Machine Learning

3. Dezember 2020, 10:00 Uhr | Autor: Adarsh Kyadige / Redaktion: Sabine Narloch
© ra2studio / Fotolia

Von Daten über Modelle bis hin zu Machine-Learning-Lösungen – in der Realität ist das oft ein mühsamer Weg. Adarsh Kyadige von Sophos erläutert, welche Schritte unternommen werden müssen, um Daten für eine ML-Lösung auszuwählen, zu sammeln und zu bereinigen.

Künstliche Intelligenz bzw. Machine Learning hat in den letzten zehn Jahren einen enormen Aufschwung erlebt. Viele Branchen investieren jetzt massiv in Lösungen, die auf maschinellem Lernen basieren. Auch die Nachfrage nach qualifizierten Spezialisten ist sprunghaft gestiegen. Mehrere Universitäten weltweit bieten Abschlüsse mit dem Schwerpunkt Data Science oder Künstlicher Intelligenz an, und auch an deutschen Hochschulen gewinnen diese Inhalte deutlich an Bedeutung.

Während sich Universitäten dabei vor allem auf die mathematischen und theoretischen Konzepte konzentrieren, können die erforderlichen Fähigkeiten und Kenntnisse für das Training von Machine-Learning-Modellen bei Problemstellungen in der realen Welt ganz anders aussehen.

Verfügbarkeit der notwendigen Daten
In den meisten Fällen entscheidet die Verfügbarkeit von Daten darüber, ob maschinelles Lernen zur Lösung eines bestimmten Problems eingesetzt werden kann oder nicht. Vor dem Start eines neuen Projekts steht daher die Frage: Wird ein auf diesen Daten trainiertes Modell die meiste Zeit die richtigen Antworten liefern?

Diese Frage gilt unabhängig von dem Modell, der Bibliothek oder der Sprache, die für das ML-Experiment gewählt wird. Und es gibt weitere entscheidende Kriterien. Ein Modell ist immer nur so gut, wie die Daten, die ihm zugeführt werden. Wichtig ist daher zu klären:

  • Sind ausreichend Daten vorhanden, um ein gutes Modell zu trainieren? Sofern es das Hardware-Budget nicht überschreitet, ist es fast immer richtig, mehr Daten zu verwenden.
  • Sind die Prognosen bei einem überwachten Lernprozess belastbar? Wird das Modell mit den richtigen Informationen gefüttert?
  • Sind diese Daten eine genaue Darstellung der realen Verteilung? Sind genügend Variationen in den Proben, um den Problembereich abzudecken?
  • Besteht konstanter Zugang zu einem ständigen Strom neuer Daten, mit denen das Modell aktualisiert und auf dem neuesten Stand gehalten werden kann?

Zusammenstellen der Daten
Die notwendigen Daten für die Erstellung eines Datensatzes für eine ML-Lösung befinden sich häufig verteilt auf mehrere Quellen. Verschiedene Teile einer Stichprobe werden über verschiedene Produkte gesammelt und von diversen Teams auf unterschiedlichen Plattformen verwaltet. Daher besteht der nächste Schritt im Prozess oft darin, all diese Daten in einem einzigen Format zusammenzufassen und so zu speichern, dass sie leicht zugänglich sind.

Anbieter zum Thema

zu Matchmaker+

  1. Erst die Datenjagd, dann Machine Learning
  2. Weitere Herausforderungen und ein Fluch

Lesen Sie mehr zum Thema


Jetzt kostenfreie Newsletter bestellen!

Weitere Artikel zu Sophos GmbH Fort Malakoff Park

Weitere Artikel zu Künstliche Intelligenz

Weitere Artikel zu Digitale Transformation

Matchmaker+