Die direkte, mit einer Kühlleistung von maximal vier Megawatt Wärme ausgelegte Warmwasserkühlung kühlt die rund 311.000 Prozessorkerne und Arbeitsspeicherriegel von SuperMUC-NG. Dabei steigt die Temperatur der Warmwasserkühlung auf bis zu 55 °C. Diese Abwärme der IT-Systeme kann in der kalten Jahreszeit dazu dienen, Gebäude zu heizen. Darüber hinaus nutzt die Adsorptionsanlage die Wärme des Warmwassers, um Kälte zu produzieren. Damit kühlt sie die erwärmte Luft der verbleibenden luftgekühlten Komponenten mittels wassergekühlter Rücktüren, die als Luft-Wasserwärmetauscher arbeiten. Dazu sind Wasser mit einer Temperatur von rund 20 °C sowie eine maximale Kühlleistung von etwa 0,6 Megawatt nötig.
Dieses Wärmerückgewinnungssystem spart bis zu 80 Prozent Strom für die Kühlung gegenüber konventionellen Kühlsystemen. Der Rechner kühlt sich somit gewissermaßen selbst, da die vorhandene Wärme der Prozessoren die Produktion vom Kaltwasser ermöglicht.
Die Vorzüge des Kühlungskonzeptes betont Prof. Dr. Dieter Kranzlmüller, Leiter des Leibniz-Rechenzentrums: „Computer verbrauchen Strom nicht. Sie wandeln lediglich elektrische Energie in Wärmeenergie um – und das sehr effizient. Wir arbeiten am LRZ deshalb schon lange mit Warmwasserkühlung für unsere Supercomputer und sind daran interessiert die dabei entstehende Wärme nach zu nutzen. So können wir unser Rechenzentrum so energieeffizient wie möglich betreiben. Der Einsatz von Adsorptionskältemaschinen ist hierbei ein vielversprechender Ansatz.“
Das Konzept wirkt sich äußerst positiv auf die Energieeffizienz aus: Nur ein sehr geringer Stromanteil dient tatsächlich zur Kühlung des Rechners. SuperMUC-NG erreicht den sehr niedrigen PUE (Power Usage Efficiency)-Wert von 1,08. Nur acht Prozent des Energieverbrauchs der gesamten Rechnerinfrastruktur benötigen periphere Systeme, der Rest ist die reine Energieaufnahme des Rechners. Die spezielle Kühlinfrastruktur des Höchstleistungsrechners reduziert damit auch die mit dem Rechner verbundenen CO2-Emissionen drastisch. Im Vergleich steht der SuperMUC-NG damit sehr gut da: Im Branchendurchschnitt liegt der PUE-Wert bei 1,67.
Hybridsystem zur Rückkühlung
Die Rückkühlung der Adsorptionsanlage erfolgt durch zwei separate Hybrid-Rückkühler, die trocken oder nass arbeiten können. Die Nasskühlung sorgt dafür, dass die Rückkühltemperatur durch Verdunstungskühlung niedriger als die Außentemperatur sein kann. Dieses Hybridsystem spart Strom und ermöglicht bei höheren Außentemperaturen den Einsatz eines kleineren Kühlsystems. Im trockenen Betrieb brauchen die Rückkühler kein Wasser, was den Wasserverbrauch des Systems senkt.
So funktioniert die Adsorptionskühlung:
Die Fahrenheit-Adsorptionskälteaggregate arbeiten nach dem Prinzip der Feststoffsorption, Adsorption (lat. (an-)saugen) genannt. Adsorption bezeichnet die Anreicherung von Stoffen (Gase oder Flüssigkeiten) an der Oberfläche eines Festkörpers, dem Adsorbens. In Adsorptionsprozessen wird Wasserdampf vom Sorptionsmaterial (Silikagel oder Zeolith) „angesaugt“ und aufgenommen (adsorbiert), wodurch Wasser verdampft, und Kälte entsteht. Ist das Material gesättigt, wird es durch Wärmezufuhr regeneriert. Fahrenheit verwendet als Kältemittel reines Wasser ohne synthetische Kältemittel. Mit den Aggregaten lässt sich ein GWP (Global Warming Potential, Treibhauspotenzial) von Null realisieren. Die Vorgaben der EU-Verordnung über fluorierte Treibhausgase (F-Gase-Verordnung) seien problemlos eingehalten, so Fahrenheit.
Eine Adsorptionskältemaschine kühlt Wasser ab, das anschließend dazu dient, Räume zu klimatisieren oder beispielsweise Maschinen, Server oder andere Prozesse zu kühlen. Die Besonderheit der Adsorptionskälte ist, dass sie Wärme, wie zum Beispiel Fernwärme oder Maschinenabwärme anstatt Strom als Hauptantriebsenergie nutzt. So spart die Adsorptionskältemaschine rund 80 Prozent der normalerweise bei einer Klimaanlage beziehungsweise Kältemaschine anfallenden Stromkosten ein.