Marketing-Abteilungen beispielsweise legen Wert auf korrekte Anschriften für Mailing-Aktionen, während Support-Mitarbeiter vor allem auf die Aktualität und Vollständigkeit der Daten in den CRM-Systemen angewiesen sind. Wieder andere Abteilungen stellen weitere und andere Anforderungen an ihre Datenhaltungssysteme. Ob die Qualität der Daten gut oder schlecht ist, lässt sich nur mit Hilfe der Datennutzer und nur für ihren speziellen Anwendungsfall feststellen.
Nach einer umfassenden Analyse können nun nicht nur Aussagen zum allgemeinen Zustand der Datenqualität gemacht werden - auch die individuellen Anforderungen der Fachabteilungen und die prozessualen Schwachstellen sind bekannt. Jetzt kann man bewerten, ob Daten fit-for-use sind. Und erst auf Basis einer solchen Analyse lassen sich wirklich profunde und somit langfristig wirksame Strategien entwickeln, die die Datenqualität dauerhaft und unternehmensweit sichern.
Eine weitere Symptom-Behandlung mit Ad-hoc-Lösungen ist dann nicht mehr nötig. Dies spart Kosten für aufwendige Nachbearbeitungen von Daten und gibt finanzielle Planungssicherheit. Außerdem lassen sich auf dieser Grundlage Implementierungskosten für Datenqualitätslösungen senken, da Umfang und Aufwand der Implementierung besser abgeschätzt werden können. So wird auch der ROI schneller erreicht. Als Nebeneffekt kann man zudem belastbare Aussagen über die Effektivität von Arbeitsprozessen treffen - und hier mögliche Einsparpotenziale aufdecken.