Allein mit Containern entkommt der Nutzer dem “Lock-in” allerdings nicht. Denn Container sind in der Regel “stateless”, sie werden nicht zur Speicherung oder Analyse von Daten verwendet. Sind Anwendungen in Betrieb, generieren diese im Laufe der Zeit aber Daten, die gespeichert und verwaltet werden müssen.
Um mit den Anwendungen autonom zu bleiben, müssen Container und Daten gemeinsam betrachtet werden. Sind beispielsweise die Container portabel, die Daten aber nicht, läuft die Anwendung nur bei einem Anbieter. Um diese Abhängigkeiten zu vermeiden, ist es daher wichtig, sich genau anzusehen, welche Anforderungen an Datenmanagement, -speicherung und -analyse gestellt werden. Werden die Daten aus der Anwendung analysiert und wenn ja, in welchem zeitlichen Abstand zur Generierung der Daten? Geht es darum, Trends über einen Zeitraum zu betrachten oder muss man zeitnah analytische Entscheidungen treffen? Für die meisten Anwendungen gilt Zweiteres. Gerade für E-Commerce- und Handelsunternehmen müssen Schritte wie Personalisierung oder Produktempfehlungen so zeitnah wie möglich nach einer Kundenaktion erfolgen, um eine Erfolgschance zu haben.
Die Datenanalyse wiederum kann auf verschiedenen Arten der Datenspeicherung basieren. Relationale, NoSQL- und Graph-Datenbanken setzen alle auf unterschiedliche Methoden, um die wichtigen Informationen aus den Datenmassen herauszufiltern, die von Anwendungen generiert werden. Bei all diesen verfügbaren Möglichkeiten lohnt es sich, vorab zu prüfen, ob und wie die unterschiedlichen Datenbanken und -modelle neben containerbasierten Anwendungen integriert werden oder als eigenständige Container fungieren können.
Natürlich bieten Public-Cloud-Dienste spezifische Funktionen für die Datenspeicherung oder -analyse. Werden diese genutzt, begibt man sich für diese Zeit in Abhängigkeit, unabhängig davon, ob Container im Einsatz sind oder nicht. Dieser “Lock-in-Effekt” ließe sich mit einem Data Layer umgehen, der über mehrere Standorte und Cloud-Anbieter hinweg funktioniert – so wie es Container tun. Ein solcher, von der Cloud unabhängiger Ansatz ermöglicht es Unternehmen, bei Bedarf zwischen den eigenen Rechenzentren und einem Public-Cloud-Anbieter zu wechseln oder verschiedene Public-Cloud-Services gleichzeitig zu nutzen.
Unabhängig mit Containern und der richtigen Datenstrategie
Container bieten eine gute Möglichkeit, skalierbare Anwendungen bereitzustellen, die schneller und effizienter auf die Benutzeranforderungen reagieren können als herkömmliche Infrastrukturen. Sie allein verhindern allerdings noch keinen “Lock-in”. Dafür ist es vielmehr erforderlich, auch die Anforderungen der Anwendung an Datenmanagement, -analyse und Storage-Umgebung zu prüfen.
Denn wirklich autonom ist ein Unternehmen nur mit einer möglichst umfassenden und durchdachten Datenstrategie. Durch vorausschauende Planung können Entwickler beeinflussen, wie gut ihr Unternehmen neue Cloud-Strategien umsetzt, um Datenautonomie zu gewährleisten und “Lock-ins” zu vermeiden. Ein positiver Nebeneffekt: Die Bedürfnisse der sogenannten “Right Now Economy” erfüllen sie so gleich mit.
Patrick Callaghan ist Solutions Architect bei DataStax